12:1

EMISSION CONTROL SYSTEM

CONTENTS

1.	SPECIFICATIONS	17A-1-1
	GENERAL SPECIFICATIONS	17A-1-1
	SERVICE SPECIFICATIONS	17A-1-1
	TORQUE SPECIFICATIONS	17A-1-2
	SEALANTS	17A-1-2
2.	PARTS LOCATION	17A-2-1
3.	INSPECTION	17A-3-1
	POSITIVE CRANKCASE VENTILATION VALVE	17A-3-1
	REED VALVE (WITH AIR CONTROL VALVE)	17A-3-1
	REED VALVE (WITHOUT AIR CONTROL VALVE)	17A-3-1
	SECONDARY AIR CONTROL SOLENOID VALVE	17A-3-2
		17A-3-3
		17A-3-3
		17A-3-3
		17A-3-4
	COOLANT TEMPERATURE SENSOR	17A-3-5

PWEE9007

1. SPECIFICATIONS

GENERAL SPECIFICATIONS

Positive crankcase ventilation valve	Variable flow rate type
Reed valve	Reed valve type (without air control valve) Reed valve type (with air control valve)
Secondary air control solenoid valve	ON-OFF solenoid valve
EGR valve	Single type
Vacuum regulator valve	Diaphragm type
Thermo valve	Bimetal type or Wax type
Oxygen sensor	Zirconia sensor type
Coolant temperature sensor	Thermistor type

NOTE

The emission control systems differ in their specifications depending on the models and destinations. From the emission control parts listed in the GENERAL SPECIFICATIONS, the optimum ones have been selected and installed. Refer to the Workshop Manuals of specific models, therefore, for the description of parts that have been mounted.

.

SERVICE SPECIFICATIONS

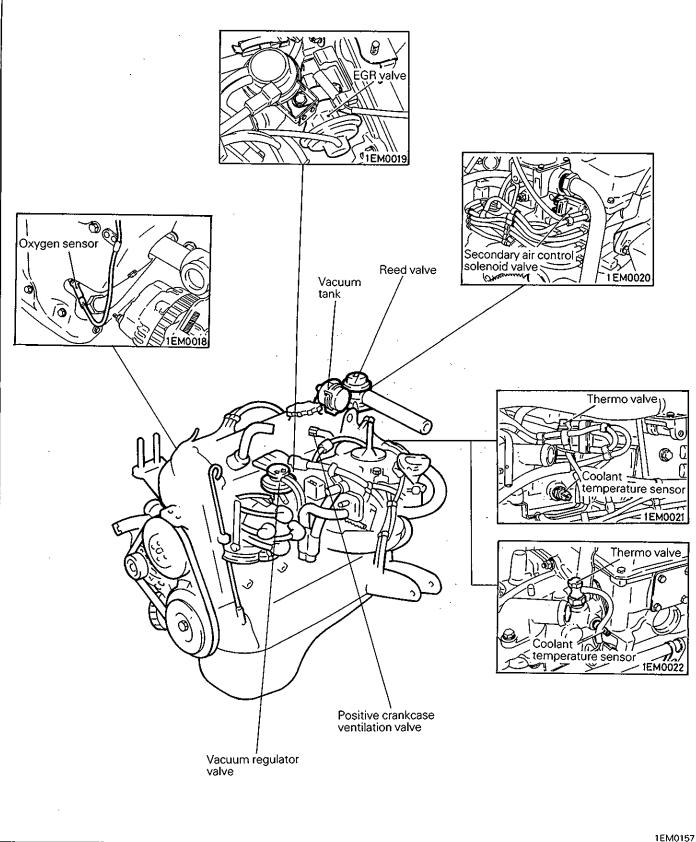
Reed valve (with air control valve)			
Valve opening ch	eck pressure	36 kPa (270 mmHg, 10.6 inHg)	
EGR valve			
Valve closing che	ck pressure	2.7 kPa (20 mmHg, 0.8 inHg)	
Valve opening ch	eck pressure	43 kPa (320 mmHg, 12.6 inHg)	
Thermo valve			
Valve opening ch	eck temperature	10°C (50°F) or lower	
Valve closing che	ck temperature	80°C (176°F) or higher	
Secondary air co	ontrol solenoid valve		
Resistance [at 20°C (68°F)]		$36-44 \Omega$	
Coolant temper	ature sensor		
Except 4G13 (12 valve) engine with electronic control carburetor			
Resistance	At 0°C (32°F)	5.9 k Ω	
	At 20°C (68°F)	$2.5 \mathrm{k}\Omega$	
	At 40°C (104°F)	1.1 kΩ	
	At 80°C (176°F)	0.3 kΩ	
4G13 (12 valve) e	ngine with electronic control carbu	retor	
Resistance	At 0°C (32°F)	$5.8 \mathrm{k}\Omega$	
	At 20°C (68°F)	2.4 kΩ	
	At 40°C (104°F)	1.1 k Ω	
	At 80°C (176°F)	$0.3 \mathrm{k}\Omega$	
· · · ·			

1

17A-1-1

.

TORQUE SPECIFICATIONS

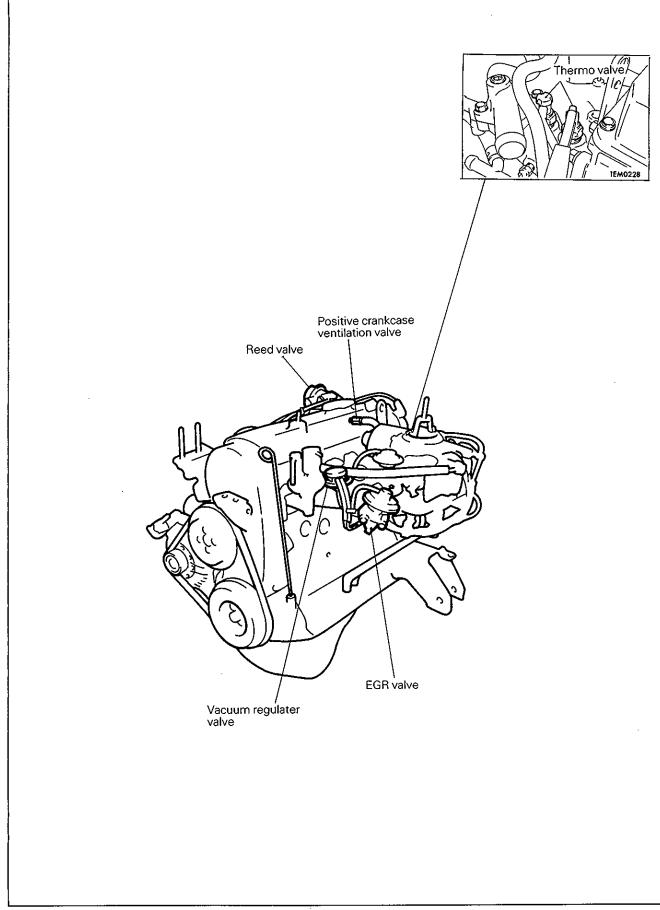

		Torque	
	Nm	kgm	ft.lbs.
Positive crankcase ventilation valve	10	1.0	7.3
Secondary air pipe flare nut	55	5.5	41
EGR valve attaching bolt (M6)	9	0.9	7
(M8)		2.2	16
Thermo valve	30	3.0	23
Oxygen sensor	45	4.5	33
Oxygen sensor attaching nut	28	2.8	20
Coolant temperature sensor	30	3.0	23

SEALANTS

	Specified sealant	Quantity
Thermo valve threaded part	3M NUT Locking Part No. 4171or equivalent	As required
Coolant temperature sensor threaded part	3M NUT Locking Part No. 4171	As required

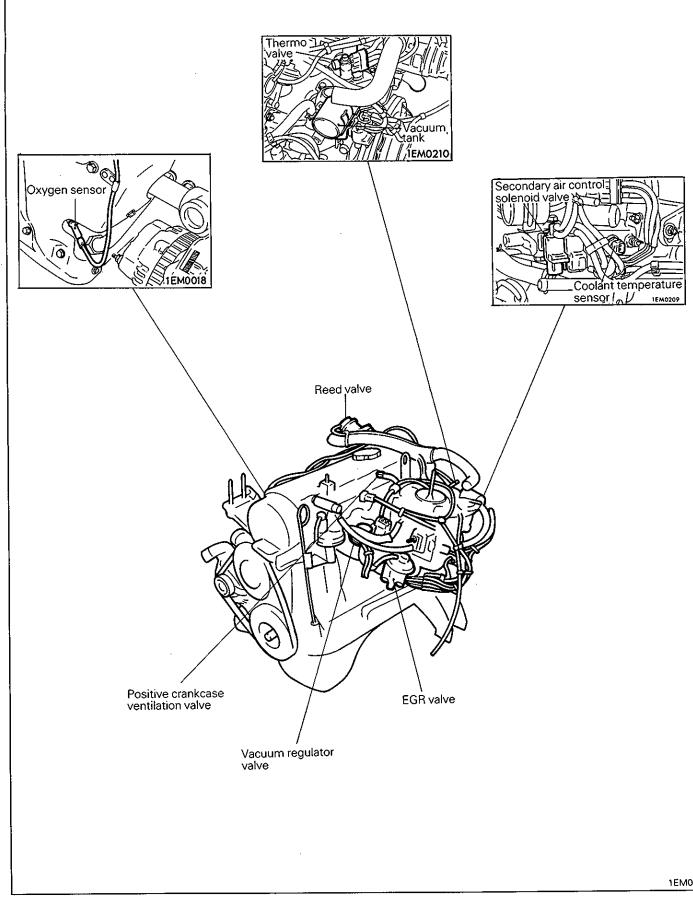
2. PARTS LOCATION

4G16, 4G13-8 VALVE AND 4G15-8 VALVE

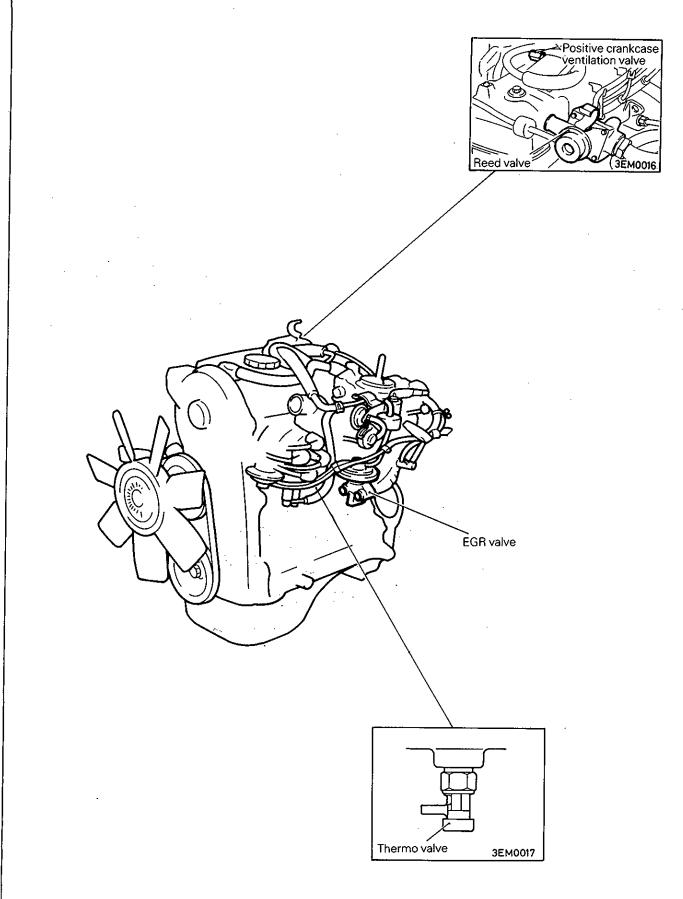


••••

÷

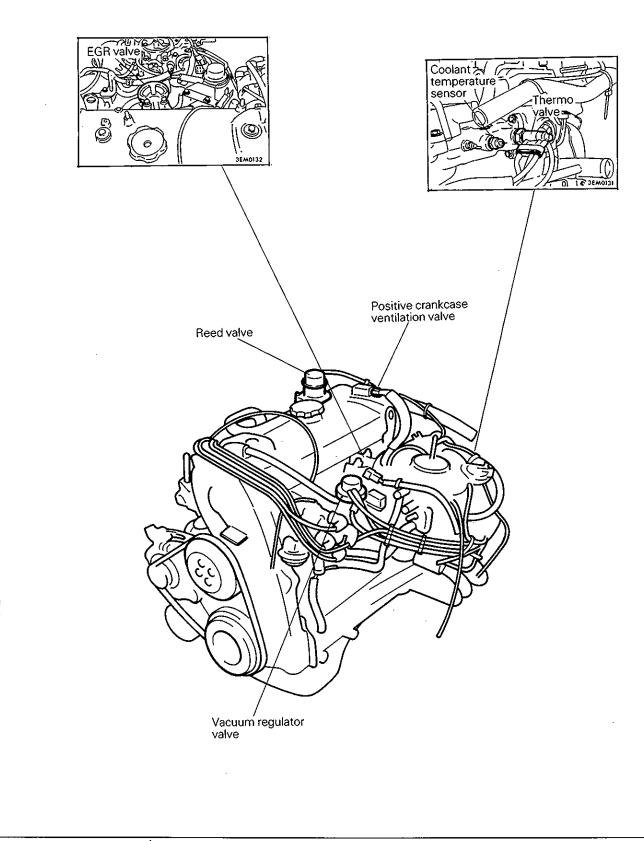

17A-2-2 EMISSION CONTROL SYSTEM – Parts Location

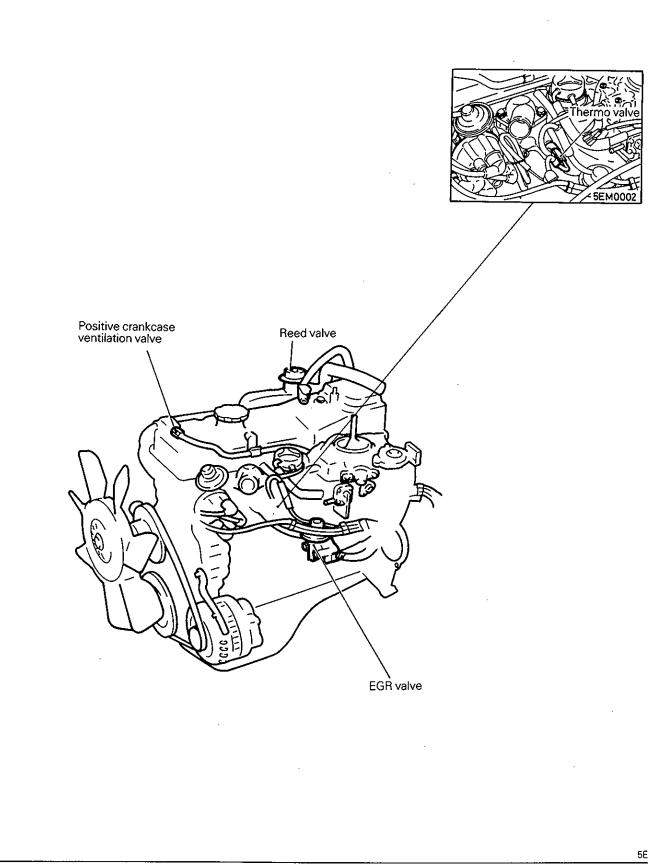
4G13-12 VALVE AND 4G15-12 VALVE WITH VARIABLE VENTURI TYPE CARBURETOR



1. . .

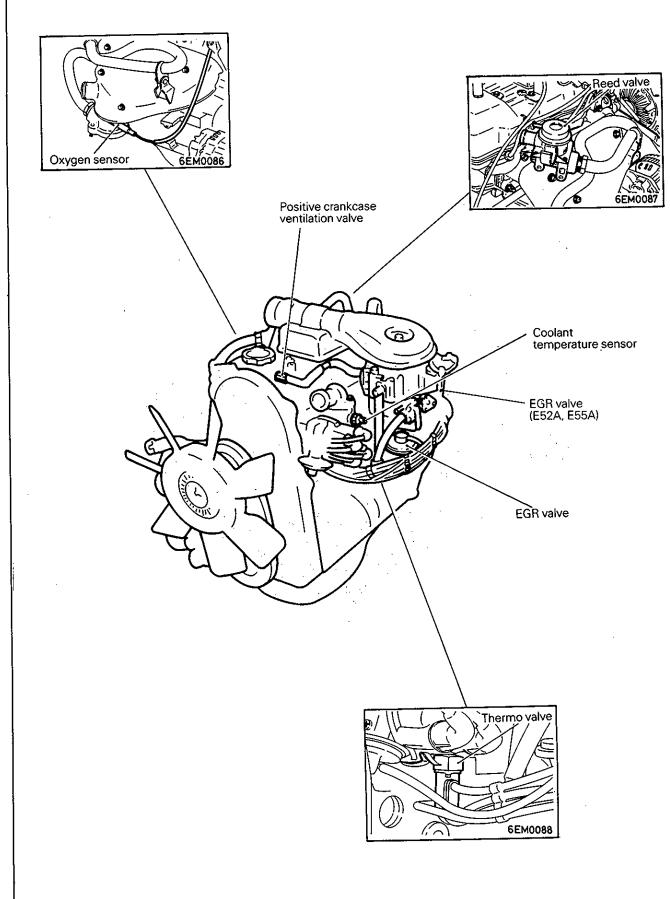
4G13-12 VALVE WITH ELECTRONIC CONTROL CARBURETOR


4G33, 4G32 AND 4G37 WITH CONVENTIONAL CARBURETOR

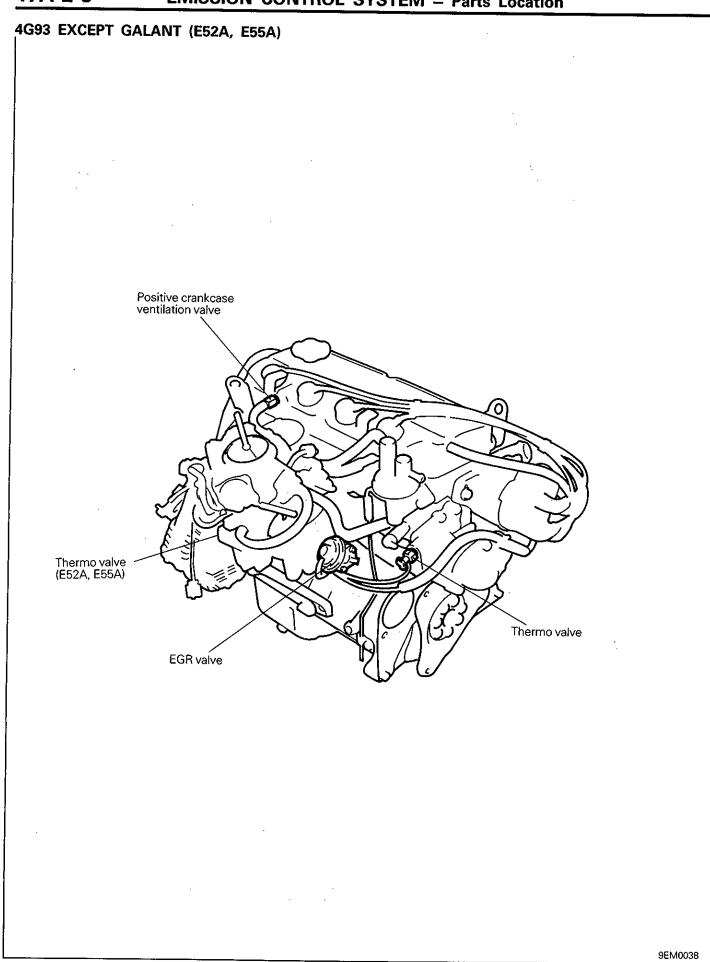

÷

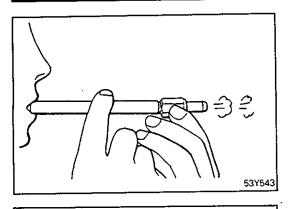
.

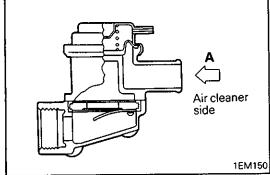
4G37 WITH ELECTRONIC CONTROL CARBURETOR

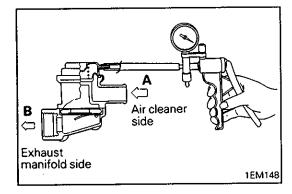


4G54 AND G54B


1




6EM0085



.

3. INSPECTION

POSITIVE CRANKCASE VENTILATION VALVE

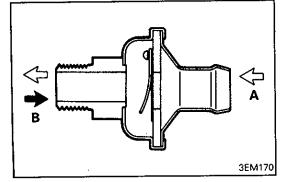
- (1) Remove the positive crankcase ventilation valve.
- (2) Blow from the threaded end of positive crankcase ventilation valve. If you cannot blow through it, positive crankcase ventilation valve is clogged.
- (3) If positive crankcase ventilation valve is clogged, clean positive crankcase ventilation valve with cleaning solvent.
- (4) Tighten the positive crankcase ventilation value to specified torque.

REED VALVE (WITH AIR CONTROL VALVE)

- (1) Remove the reed valve.
- (2) Blow in air from A side to check that air does not blow through.

- (3) Connect a hand vacuum pump to the reed valve nipple.(4) Apply a vacuum of 67 kPa (500 mmHg, 19.7 inHg) and
- (4) Apply a vacuum of 67 kPa (500 mmHg, 19.7 mHg) and check air tightness.

(5) Apply a vacuum of 36 kPa (270 mmHg, 10.6 inHg) and blow in air to check condition as follows.


Air blow direction	Normal condition
A to B	Air blows through
B to A	Air does not blow through

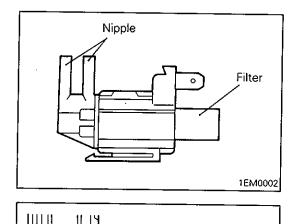
(6) If any fault is found in above checks, replace the reed valve.(7) Tighten the reed valve to specified torque.

REED VALVE (WITHOUT AIR CONTROL VALVE)

- (1) Remove the reed valve.
- (2) Blow in air and check condition as follows.

Air blow direction	Normal condition
A to B	Air blows through
B to A	Air does not blow through

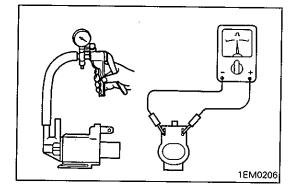
© Mitsubishi Motors Corporation June 1991


17A-3-2

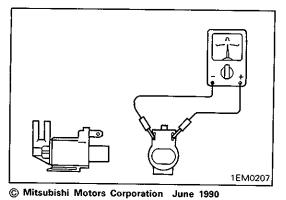
EMISSION CONTROL SYSTEM – Inspection

(3) If any fault is found in above checks, replace the reed valve.

.


(4) Tighten the reed valve to specified torque.

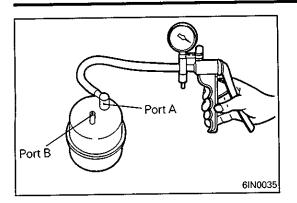
SECONDARY AIR CONTROL SOLENOID VALVE


(1) Remove the secondary air control solenoid valve.

(2) Connect a hand vacuum pump to the nipple (with white identification mark).

1EM0003

Identification color: White

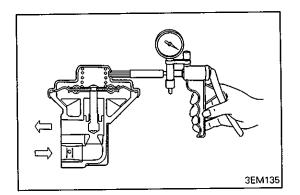


(3) Apply vacuum and check air tightness both when the battery voltage is applied directly to the solenoid valve terminal and when not applied.

Battery voltage	Normal condition
When applied	Vacuum leaks
When not applied	Vacuum holds

(4) Measure solenoid coil resistance.
Standard value: 36 – 44 Ω [at 20°C (68°F)]

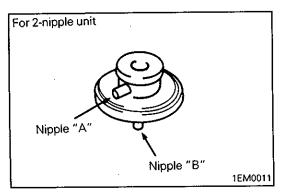
PWEE9007



VACUUM TANK

- (1) Install a hand vacuum pump to the port A of the vacuum tank and apply 67 kPa (500 mmHg, 19.7 inHg) of vacuum to make sure that the tank is airtight.
- (2) Connect the hand vacuum pump to the port B of the tank and make sure that when vacuum is applied, vacuum leaks.

EGR VALVE


- (1) Remove the EGR valve and check it for sticking, deposit of carbon, etc.
 - If such condition exists, clean with adequate solvent to ensure correct valve seat contact.

- (2) Connect a hand vacuum pump to the EGR valve. Caution
 - Plug one nipple of the EGR valve.
- (3) Apply a vacuum of 67 kPa (500 mmHg, 19.7 inHg) and check air tightness.
- (4) Blow in air from one passage of the EGR to check condition as follows.

Vacuum	Normal condition
2.7 kPa (20 mmHg, 0.8 inHg) or lower	Air does not blow through
43 kPa (320 mmHg, 12.6 inHg) or higher	Air blows through

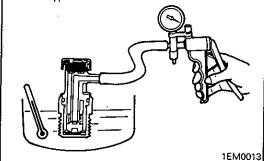
(5) Replace the gasket with a new one and tighten the EGR valve to specified torque.

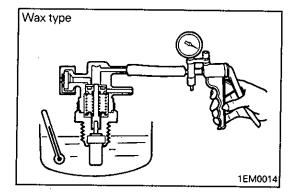
VACUUM REGULATOR VALVE

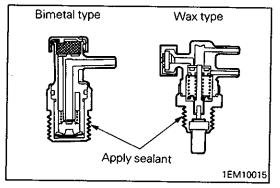
- (1) Remove the vacuum regulator valve.
- (2) Connect a hand vacuum pump to nipple "A" and apply vacuum. Vacuum regulator valve is normal if it is not held.
- (3) Connect air compressor to nipple "B" and apply a pressure of 4.0 kPa (30 mmHg, 1.2 inHg). Vacuum regulator valve is normal if vacuum build up when the hand vacuum pump is operated.

17A-3-4

EMISSION CONTROL SYSTEM – Inspection




NOTE


If an air compressor pump is not available, check while blowing air through the nipple "B".

(4) Install the vacuum regulator valve.

Bimetal type

THERMO VALVE

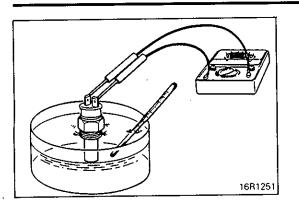
- (1) Remove the thermo valve.
 - Caution
 - When removing the thermo valve, do not use wrenches or other tools on the resin part.
- (2) Connect a hand vacuum pump to the thermo valve nipple.
- (3) Immerse the temperature sensing section in water and apply a negative pressure by a hand vacuum pump while heating the water.

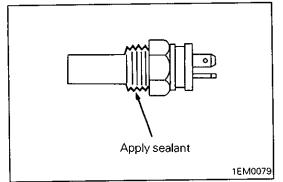
Water temperature	Normal condition
10°C (50°F) or lower	Vacuum leaks
80°C (176°F) or higher	Vacuum holds

NOTE

Different engines have different number of thermo valve nipples. Be sure to check all nipples.

(4) If any fault is found in above checks, replace the thermo valve.


(5) Apply sealant to threaded portion.


Specified sealant: 3M NUT Locking No. 4171 or equivalent

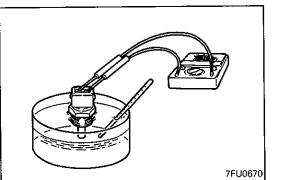
(6) Install the thermo valve and tighten it to specified torque.

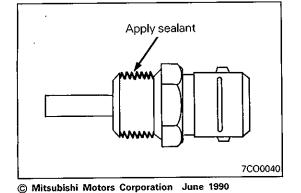
Caution

 When installing the thermo valve, do not use wrenches or other tools on the resin part.

COOLANT TEMPERATURE SENSOR [Except 4G13 (12 valve) engine with electronic control carburetor]

- (1) Remove the coolant temperature sensor from the intake manifold.
- (2) Immerse the temperature sensing section in water and measure resistance between terminals 1 and 2 while heating the water.


Resistance (kΩ)
5.9
2.5
1.1
0.3


(3) If the resistance deviates greatly from the standard value, replace the coolant temperature sensor.

(4) Apply sealant to threaded portion.

Specified sealant: 3M NUT Locking No. 4171 or equivalent

(5) Install the coolant temperature sensor and tighten it to specified torque.

COOLANT TEMPERATURE SENSOR [4G13 (12 valve) engine with electronic control carburetor]

- (1) Remove the coolant temperature sensor from the intake manifold.
- (2) Immerse the temperature sensing section in water and measure resistance between terminals 1 and 2 while heating the water.

Temperature °C (°F)	Resistance (kΩ)
0 (32)	5.8
20 (68)	2.4
40 (104)	1.1
80 (176)	0.3

(3) If the resistance deviates greatly from the standard value, replace the coolant temperature sensor.

(4) Apply sealant to threaded portion.

Specified sealant: 3M NUT Locking No. 4171 or equivalent

(5) Install the coolant temperature sensor and tighten it to specified torque.

PWEE9007

NOTES